Engineering | The Polytechnic School

Arunachalanadar Mada Kannan

Arunachalanadar Mada Kannan, Ph.D.
Engineering and Manufacturing Engineering Program

7171 E. Sonoran Arroyo Mall
Peralta Hall, 335A (map)
Mail Code: 2180

LinkedIn profile
ASU Directory page

Expertise: Energy systems, fuel cells, nanotechnology


Arunachalanadar Mada Kannan earned his Ph.D. degree in 1990 from the Indian Institute of Science, Bangalore with a focus on Metal/Air Batteries and Alkaline Fuel Cells. Kannan has been involved in Fuel Cell and Battery research and development for more than 30 years. Currently, he is a Professor in the Engineering Program at the Polytechnic School of the Ira A. Fulton Schools of Engineering. Before joining the ASU, Kannan worked as Chief Scientist at Hoku Scientific Inc., Honolulu managing a scientific research group involved in developing Fuel Cell system for automotive applications. His area of expertise and research interests are in developing smart energy materials for Fuel Cells, Batteries and Concentrating Solar Power systems.


M.B.A., Statistical Process Control, Madras University, India, 1999
Ph.D., Batteries and Fuel Cells, Indian Institute of Science, India, 1990
M.S., Chemistry, Madurai Kamaraj University, India, 1985
B.S., Chemistry, Madurai Kamaraj University, India, 1983

Academic/Professional Work Experience

Professor, Arizona State University, Fall 2014
Associate Professor, Arizona State University, Fall 2005
Technical Advisor, Hoku Scientific Inc., Honolulu, July 2005 to June 2006
Chief Scientist, Hoku Scientific Inc., Honolulu, Oct. 2002 to June 2005
Research Associate, University of Texas at Austin, July 1999 to Sept. 2002
Head – Technical, Exide Industries, Madras, India, Nov. 1993 to June 1999
Research Scientist, SPIC Science Foundation, Madras, India, Jan. 1991 to Oct. 1993


  1. Vapor pressure and corrosivity of ternary metal-chloride molten-salt based heat transfer fluids for use in concentrating solar power systems, Applied Energy, (2015, in press), Vignarooban, X. Xu, K. Wang, E.E. Molina, P. Li, D. Gervasio and A.M. Kannan.
  2. Prospects and problems of concentrating solar power technologies for power generation in the desert regions, Renewable & Sustainable Energy Reviews, (2015, in press), Xinhai Xu, K. Vignarooban, Keng Hsu and M. Kannan.
  3. Heat transfer fluids for concentrating solar power systems, Applied Energy, 146 (2015) 383–396. K. Vignarooban, Xinhai Xu, Keng Hsu and M. Kannan.
  4. Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell, Journal of Power Sources 281 (2015) 94-102. Kruusenberg, S. Ratso, M. Vikkisk, P. Kanninen, T. Kallio, A.M. Kannan., K. Tammeveski.
  5. A Study of PV, batteries and fuel cells system based hybrid microgrid model for intermittent Level 3 EV charging services, IEEE Transactions on Energy Conversion, 30 (2015) 359-366. Patterson and A.M. Kannan.
  6. Nano-electrocatalyst materials for low temperature fuel cells: a review, Chinese Journal of Catalysis, 36 (2015) 458–472. Vignarooban, J. Lin, A. Arvay, S. Kolli, I. Kruusenberg, L. Munukutla and A.M. Kannan.
  7. Cooling Strategy for effective Automotive Power Trains: 3D Thermal Modeling and Multi-Faceted Approach for integrating Thermoelectric Modules into Proton Exchange Membrane Fuel Cell Stack, J. Hydrogen Energy, 39 (2014) 17327-335. D. Ramani, K. Hsu, A. M. Kannan, A. Mayyas, T. Schwenn.
  8. Stability of Hastelloys in Molten Metal-chloride Heat-transfer Fluids for Concentrating Solar Power Applications, Solar Energy, 103 (2014) 62-69. Vignarooban, P. Pugazhendhi, C. Tucker, D. Gervasio and A.M. Kannan.
  9. Cross-linked Glucose Oxidase Clusters for Biofuel Cell Anode Catalysts, Biofabrication, 5 (2013) J. Dudzik, W.-C. Chang, A.M. Kannan, S. Filipek, S. Viswanathan, P. Li, V. Renugopalakrishnan and G.F. Audette.
  10. Thermal Modeling & Analysis of an On-Board Internal Combustion Engine Based Powertrain, J. Modern Engineering, 13 (2013) 17-24. A. Mayyas, M.A. Omar, P. Pierluigi and A. M. Kannan.
  11. Arvay, J. French, J.-C. Wang, X.-H. Pengand A.M. Kannan, Nature inspired flow field design for proton exchange membrane fuel cell, Int. Hydrogen Energy, 38 (2013) 3717-3726.
  12. Development of binary Pt-Pd and ternary Pt-Pd-Ru nanocatalysts for direct methanol fuel cells, J. Hydrogen Energy, 38 (2013) 2900-2907. T. Arikan, A.M. Kannan and F. Kadirgan.
  13. Effect of diffusion layers fabricated with different fiber diameters on the performance of low temperature proton exchange membrane fuel cells, Power Sources, 221 (2013) 134-140. C.J. Hung, C.H. Liu, T.H. Ko, W.H. Chen, S.H. Cheng, W.S. Chen, A.Y. Yu, and A.M. Kannan.
  14. Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells – A review, Power Sources 213, 317-337, 2012, A. Arvay, E. Yli-Rantala, C.-H. Liu, X.-H. Peng, P. Koski, L. Cindrella, P. Kauranen, P.M. Wilde, A.M. Kannan.
  15. Non-platinum cathode catalysts for alkaline membrane fuel Cells, J. Hyd. Energy, 37 4406-4412, 2012, I. Kruusenberg, L. Matisen, Q. Shah, A.M. Kannan, K. Tammeveski.
  16. Convergence criteria establishment for 3D simulation of proton exchange membrane fuel cell, J. Hyd. Energy, 372482-2489, 2012, A. Arvay, X.H. Peng, A.M. Kannan.
  17. Influence of Cell Fabrication Procedure on the Performance of the Dye Sensitized Solar Cell, Nanoscience and Nanotechnology, 11, 1–6, 2011. C.Y. Jen, L.V. Munukutla, S. Radhakrishnan, A.M. Kannan, A. Htun.
  18. Comparison of Pt/MWCNTs nanocatalysts synthesis processes for proton exchange membrane fuel cells, , J. Hyd. Energy, 36, 10877-10883, 2011, X. Liu, R. Villacorta, A. Adame and A.M. Kannan.
  19. Study of carbon nanotube supported platinum nanocatalyst fabricated with sodium formate reducing agent in ethylene glycol suspension, ISRN Nanotechnology, 2011, Article ID 708045, pages 1-6, doi:10.5402/2011/708045, C. Mason and M. Kannan.
  20. Development of gas diffusion electrodes for low relative humidity proton exchange membrane fuel cells, J. Hyd. Energy, 36, 221-220, 2011, Y.F. Huang, A.M. Kannan, C.S. Chang, C.W. Lin.
  21. Development of gas diffusion layer using water based carbon slurry for proton exchange membrane fuel cells, Electrochimica Acta, 56, 1591-1596, 2011, F. Lin, A. Adame, R. Villacorta, J. Wertz, R. Ahmad, M. Thommes, A. M. Kannan.
  22. CO adsorption in PdxCoyXz (X=Au, Mo, Ni) tertiary alloy nano-catalysts for PEMFCs – A theoretical analysis, J. Energy Res., 35, 594-600, 2010, M.G. Castañón, S. Velumani, O.V. Kharissova, M.A. Jiménez and A.M. Kannan.
  23. Effect of surface modification for the growth of multi-walled carbon nanotubes on carbon paper for proton exchange membrane fuel cells, Electrochemical Society 26, 107-116, 2010, R. Aparna, A.M. Kannan and L. Munukutla.
  24. Development and evaluation of Gas Diffusion Layer using paraffin wax carbon for PEMFCs, Fuel Cells, 10, 563-566, 2010, Cindrella and A.M. Kannan.
  25. Synthesis of Pt nanocatalyst with Micelle-encapsulated Multi Walled Carbon Nanotubes as support for Proton Exchange Membrane Fuel Cells, Electrochimica Acta, 55, 6496-6500, 2010, J.F. Lin, C.W. Mason, A. Adame, X. Liu, X.H. Peng and M. Kannan.
  26. Development of durable platinum nanocatalyst on carbon nanotubes for PEMFCs, Electrochem. Soc. 157, B846-B851, 2010, J.F. Lin, A. Adame, A.M. Kannan.
  27. Gas diffusion layers for PEMFCs using in-situ grown multi-walled carbon nanotubes nanoforest on carbon papers, Fuel Cells, 10, 369-374, 2010, P.A. Stuckey, M. Kannan and M. Ghasemi-Nejhad.
  28. Effect of carbon paper substrate of the gas diffusion layer on the performance of PEMFCs, Acta, 55, 2746–2751, 2010, J.F. Lin, J. Wertz, R. Ahmad, M. Thommes, A.M. Kannan.
  29. Synthesis and Characterization of CNT supported Platinum Nanocatalyst for PEMFCs, Power Sources, 195, 466-470, 2010, J.F. Lin, V. Kamavaram, A.M. Kannan.
  30. Carbon supported nano-sized Pt-Pd and Pt-Co electrocatalysts for PEMFCs, J. Hyd. Energy, 34, 9450-9460, 2009, F. Kadirgan, A.M. Kannan, T. Atilan, S. Beyhan, S. S. Ozenler and S. Suzer.
  31. Surface modification of Gas Diffusion Layers by inorganic Nanomaterials for PEMFCs, J. Hyd. Energy, 34, 6377-6383, 2009, L. Cindrella, A.M. Kannan, R. Ahmad and M. Thommes.
  32. Gas Diffusion Layer for PEMFCs – Review, Power Sources, 194, 146-160, 2009, L. Cindrella, A.M. Kannan, J.F. Lin, K. Saminathan, Y. Ho, C.W. Lin and J. Wertz.
  33. Membrane Electrode Assembly with doped Polyaniline Interlayer for PEMFCs under Low RH Conditions, Power Sources, 193, 447-453, 2009, L. Cindrella and A.M. Kannan.
  34. Development of Gas Diffusion Layers using surface modified carbon paper by in-situ CVD Process for PEMFCs, Power Sources, 192, 297-303, 2009, A.M. Kannan, P. Kanagala and V. Veedu.
  35. Electrodeposited Pt nanocatalyst on in-situ grown CNT based carbon paper for PEMFCs, J. Hyd. Energy, 34, 3838-3844, 2009, K. Saminathan, V. Kamavaram, V. Veedu and A.M. Kannan.
  36. Synthesis and characterization of platinum nanoparticles on in situ grown carbon, nanotubes based carbon paper for PEMFC cathode, Power Sources, 188, 51-56, 2009, V. Kamavaram, A.M. Kannan and V. Veedu.
  37. Proton-conducting membranes with high selectivity from cross-linked poly(vinyl alcohol) and poly(vinyl pyrrolidone) for direct methanol fuel cell applications, Power Sources, 186 (1), 22-28, 2009, Y.F. Huang, L.C. Chuang, A.M. Kannan, C.W. Lin.
  38. Bio-Batteries and Bio Fuel Cells: Leveraging on Electronic Charge Transfer Proteins, Nanosci. Nanotech., 9, 1665–1678, 2009, A.M. Kannan, V. Renugopalakrishnan, S. Filipek, P. Li, G.F. Audette and L. Munukutla.
  39. Nanomaterials for Energy Conversion Applications – Chapter 5, Biosolar and biofuel cells, Monograph series, American Scientific Publishers, 155–178, 2008, V. Renugopalakrsihnan M. Kannan and P.Li et al.
  40. Wire rod coating process of gas diffusion layers fabrication for PEMFCs, Power Sources, 178, 231-237, 2008, A.M. Kannan, D. Parker, S. Sadananda, L. Munukutla and J. Wertz.
  41. Functionally Graded Nano-porous Gas Diffusion Layer for PEMFCs under Low Relative Humidity Conditions, Acta, 53, 2416–2422, 2008, A.M. Kannan, L. Cindrella, and L. Munukutla.
  42. Carbon Nanochain and Carbon Nano-fibers based Gas Diffusion Layers for PEMFCs, Power Sources, 167, 330-335, 2007, A.M. Kannan and L. Munukutla.
  43. Semi-interpenetrating network based on crosslinked electrolytes for Direct Methanol Fuel Cells, Power Sources, 171 340–347 2007, C. W. Lin, Y. F. Huang and A. M. Kannan.
  44. Nano Structured gas diffusion and catalyst layers for PEMFCs, Solid State Lett. 10 47-50, 2007, A.M. Kannan, V. Veedu, L. Munukutla and M.N. Ghasemi-Nejhad.
  45. Semi-interpenetrating network based on crosslinked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride) as proton exchange fuel cell membranes, Power Sources, 164, 449–456 2007, C. W. Lin, Y. F. Huang and A.M. Kannan.
  46. Gas Diffusion Layer Using a New Type of Graphitized Nano-Carbon PUREBLACKÒ for Proton Exchange Membrane Fuel Cells, Comm., 8, 887–891, 2006, A.M. Kannan, A. Menghal and I. Barsukov.
  47. Low temperature synthesis and electrochemical behavior of LiV3O8 cathode, Power Sources, 159, 1405-1408, 2006 A.M. Kannan and A. Manthiram.